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J. Phys. A :  Math. Gen. 16 (1983j 1633-1639. Printed in Great Britain 

R-matrix bounds for local potentials 

A E A Warburton 
Department of Applied Mathematics, The University of Hull, Hull, UK 

Received 1 November 1982 

Abstract. The continuum form of the Hellmann-Feynman theorem is proved, both on 
and off the energy shell, for potentials satisfying 1," rl V ( r ) /  dr < 30 and I," 1 Vir11 dr < E. 

The corresponding bounds for the phase shifts and off -shell amplitudes are deduced. 

1. Introduction 

Use of the Faddeev equations for three-body scattering calculations requires a reliable 
approximation to the two-body amplitudes off the energy shell. In view of the 
arbitrariness of the off-shell extrapolation in the absence of three-body data it seems 
safest to extrapolate, if possible, via a central local potential. These results could then 
be approximated by more manageable amplitudes. Because of their simplicity, separ- 
able potentials have often been used for the extrapolation, but suffer from theoretical 
and practical difficulties in that (i) for a local potential the T-matrix cannot be compact 
(Osborn 1973), and hence cannot be well approximated by a separable potential for 
all momenta, (ii) phase shifts which change sign cannot be approximated by a single 
separable term, so that the approximation loses its simplicity, while gaining undeter- 
mined parameters (see, for example, Ahmed and Beghi 1982). 

The Hellmann-Feynman theorem, originally derived for the bound state problem 
(Feynman 1939), but later extended to the scattering problem (Sugar and Blankenbe- 
cler 1964), gives definite bounds for the off-shell amplitudes in terms of bounding 
potentials, and so can be used, for example with variational principles, to obtain 
potentials which approximate well both on- and off -shell. However, no rigorous 
derivation of the theorem has been given for local potentials. The on-shell form of 
the theorem, that V2(r) s Vl(r) implies S 2  381, has, of course, many direct applications. 

We consider potentials satisfying the conditions, with A > 0, 
r A r" 

For such potentials Rajagopal and Shastry (1971) have shown that multiplication of 
the partial-wave Lippmann-Schwinger equation by I gives a compact kernel K. 
Thus we have the partial-wave equivalent of the Rollnik class of potentials discussed 
by Simon (1971), although the latter class is more restricted as r + CO. 

The Hellmann-Feynman theorem is most easily expressed in terms of the R-matrix 
and the corresponding real wavefunction. In P 2 we give the relevant formalism, 
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establishing compactness (provided cos 6 # 0), and reconstructing the ‘usual’ wavefunc- 
tion, i.e. that without the 1 V11’2 factor. The advantages of the R-matrix approach are: 

(i) all wavefunctions and amplitudes are real; 
(ii) we avoid the complication of letting the energy approach the real axis from 

complex values, as discussed by Lovitch (1982); 
(iii) full off-shell unitarity of the T-matrix is guaranteed for any approximation 

giving a real symmetric R-matrix. 
The main disadvantage is that when cos S = 0 the R-matrix diverges. This makes it 
difficult to establish a uniform bound for (1  -K)-’.  However, in $ 3 we show that, 
for a potential linearly dependent on a parameter A ,  if cos S # 0 for some A ,  there is 
a neighbourhood of A in which cos8 # O  and (1 -K)-’ is uniformly bounded. It 
follows that the R-matrix is a differentiable function of A ,  and the Hellmann-Feynman 
theorem follows. 

Finally, in $4, we derive the corresponding relations between the R-matrix ele- 
ments for potentials V 2 3  VI. For the on-diagonal elements these are simple 
inequalities. For the off-diagonal elements we establish that these do not differ by 
more than the on-diagonal elements, so that the usefulness of an approximation need 
only be checked on-diagonal, i.e. for equal initial and final momenta. 

2. R-matrix theory 

The Lippmann-Schwinger equation reads, for the (real) off -shell wavefunction 
modified by the factor 1V(r)11’2, 

‘ v q ( r ) = d q ( r ) + J  K(r,  r’)’vq(r’) dr’ 
0 

where 

4 q ( r )  = Iv(r)11’2qrjl(qr), (2.2) 
K(r ,  r ’ )  = I V(r)11’2Gg(r, r’)l V(r’)11’2 sgn V(r’), (2.3) 

with 

Gg(r, r ’ )  = krr’jl(kr)nl(kr’) = Gg(r’, r )  ( r  d r ’ )  

= Go(r, r‘)+ikrr‘jl(kr)j~(kr’) (2.4) 
where Go is the (complex) T-matrix Green function. 

The R-matrix elements are then given by 

(PIRlq) = WP, sgn V4Jq) 

so that 

(klRlk) = -k tan S. 
For potentials satisfying ( 1 . 1 )  we see that dq E L 2  while 

m c s  

Tr(K’K) = jo dr j0 dr’ 1 V(r’) l (krr‘ j l (kr<)n~(kr,))21 V(r)l. 

The only difference from the T-matrix calculation of Shastry and Rajagopal (1971) 
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is that here nl replaces hj”. But lhj”12 = lji = j :  +n: an:, so that, since we are 
considering real positive energies, Tr(K’K) <cc by the same arguments. 

Now, since K is Hilbert-Schmidt, we see by the Fredholm alternative that either 
(i) K has a normalisable eigenfunction q with unit eigenvalue, or 
(ii) qq is uniquely defined (in L 2 )  by (2.1), whence (p/Rlq) is well defined by (2.5) 

for all p and q. 
In the case (i) we see, using (2.4), that 

-x 

= pdktr)  + J IV(r)11’2Go(r, r’)lV(r’j11’2 sgn V(r’jq(r’) dr’. (2.7) 
0 

Apart from the constant p this is just the on-shell equation for the complex wavefunc- 
tion \ V l ( r )  from T-matrix theory. Thus 

q ( r )  = p q r ( r ) .  (2.8) 
(We are assuming here that the energy k 2  does not correspond to a positive energy 
bound state, if any such exist. See, for example, Simon (1971).) Now from (2.7) we 
have 

p = (i//c)(dk, sgn V P )  = (ip/k)(dk, sgn v ~ F )  = -ip el6 sin S. 

cos s = 0. (2.9) 

Since p # 0 we see that we must have 

Thus at any energy such that cos 6 Z 0, (1 --K)-’ exists as a bounded operator, and 
the R-matrix is well defined. Given the solution Vq(r )  of (2.1) we can define 

since the integral is easily shown to be convergent for any r. This is the ‘usual’ 
wavefunction (satisfying the Schrodinger equation if suitably differentiable) and clearly 

\ V q ( r )  = IV(r)11’2Qq(r) (2.11) 

although (2.10) holds even where V ( r )  = 0. 
Hence 

Q q ( r )  =qrjI(qr) + Gt(r, r’)V(r’)Qq(r’) dr‘ 6: (2.12) 

although the kernel here is not Hilbert-Schmidt, and nor does Qq E L 2 .  Using (2.4) 
the T-matrix may be expressed in terms of the R-matrix by 

(PITlq)=(PIRlq)-(i /k)eiS coss(PlRlk)(qlRlk) (2.13) 

so that 

(klTlk)  = -k e” sin S. (2.14) 

Any approximation yielding a real symmetric R will then give T satisfying the full 
off-shell unitarity condition 

-k Im(plTlq) = (plT/k)*(qlTIk), (2.15) 
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(2.16) 

(2.17) 

3. The Hellmann-Feynman theorem 

Let VI and V2 be two potentials satisfying (1.1). Define 

and 

9;’ = sgn v21 ~ ~ / ~ / ~ @ b ~ ’  = sgn ~24 :~ ’  + ~ 2 1 9 : ’  (3.2) 

using (2.10). K z l  is Hilbert-Schmidt, by the same arguments as for K,  whence 9;’ E L 2 .  
Then 

13.3) 

by (2.51, (2.11) and (3.2). Note that this formula, with V z =  VI, shows that R is 
symmetric in p and q. 

Subtracting from (3.3) the same result with 1-2, p - q ,  using (3.1) and the 
symmetry of R ,  we find 

Now let 
VA = V1 + A  (V2- VI) = V1 + A  Vo ( O G A  G I ) .  (3.5) 

Then (3.4) gives, with V, and VA, replacing VI and VZ, 

where 

~ ~ h = / V 0 / 1 ’ 2 @ ) ; : = d ~  +KOA*: (3.7) 

and Koh = 1 Vo/l’ZG:I V, 1”’ sgn VA is Hilbert-Schmidt. To show the existence of the 
limit (3.6) we first show that KO, is continuous in the norm as a function of A .  Suppose, 
for a given r, that V h  ( r )  and VA(r)  are of the same sign (or one of them is zero). 
Then, since V i  - V, = ( A  ’ - A  ) Vo, 

/(vJ1”sgn v A ,  - I v ~ ” ’ s g n  v A ~  = / I V ~ , ~ ” ’ - ~ V ~ ~ ~ ’ ~ / ~ ~ A ’ - A I ~ ’ ~ / V ~ / ~ ’ ~  (3.8) 

(here and in (3.9) we use the fact that if a, b, c are non-negative numbers such that 
a = b + c, then a 

On the other hand, if  V,,(r) and V , ( r )  are of opposite sign then there exists A. 
between A and A ’  such that V,,,(r) = 0. Therefore 

Vh(r) = ( A  - A d V d r )  

s b ”’ + c 1’2 G (2a ) l”) .  
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(3.9) 

(3.10) 

(3.11) 

(3.12) 

is the Lippmann-Schwinger kernel for the potential V,. (For this result we also use 
the fact that IVA(r)l smax(lVl(r)l ,  IV2(r)l), from which we can also see that KOA and 
KA are uniformly bounded for A E (0 ,  l).) 

Now choose a fixed A such that cos S # 0. Then MA = (1 --KA)-’ exists bounded 
and we may use the identity 

(3.13) 

( i )  there is a neighbourhood of A in which M A ,  is defined and uniformly bounded, 

(ii) MA is continuous in the norm at such A. 

MA ’ - MA = MA [ 1 - (KA - KA )MA ]-I (KA - K,b. )MA 
to prove: 

although the bound may depend on A ; 

Since KOA also has these properties, so does 

NA = KoAMA = KOA (1 -KA )-I. (3.14) 

Returning to (3.7), we see that 9:’ is (strongly) continuous in A .  For 
4 ;  +NAd,^ so that 

/19:A’-q;All = llNA’d,̂ ’ -NAdqhII 

IINASII * I I ~ , ^ ’ - ~ , ^ ~ I + I I N A , - N A I I  * IId,̂ II 
+ O  as A ’ + A ,  

since d,^ = /VAI1”qrjl(qr) also has properties (i) and (ii) above. 
It follows that the limit in (3.6) exists, giving 

4. Bounds on amplitudes 

We now consider potentials such that, for all r, 

Vdr) = Vz(r)-  Vl(r)aO.  

(3.15) 
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Case ( i )  p = q  = k 

On-shell, (3.15) gives 

(d/dA)(klRlk) 2 0 ,  (4.2) 

Integrating from A = 0 to A = 1,  so that V, runs from V 1  to V2, we see that ( k  IR lk)‘2’ 3 
(klRlk)’”, i.e. that 

tan S ” ’ S  tan s‘”, (4.3) 

provided that cos S # 0 for any V,  with 0 s A s 1 .  Now our results show that tan S 
varies continuously with A except where cos S = 0, so it is possible to choose S to vary 
continuously with A even where cos S = 0. (We do not consider k = 0.) Then we have 

(4.4) * ! 2 j s  

even if 6 passes through an odd multiple of $T. 

Case lii) p = q # k .  

As in the above we find 

(q/R 2 (q /R  1q)‘l’ (4.5) 
subject to cos S never vanishing. We can see from (3.13) that this can be guaranteed 
if V, is suitably small, for example, if V2 were to be a variational approximation to 
VI. If not, it is useful to introduce an off-shell phase shift by 

(qlR 14) = -k  tan 8, 

together with the requirement that S ,  lies in the same interval ((r -;)T, ( r  +;)T)  as S .  
Then 

#” 8;’ (4.6) 

If cos S = 0 we see from the unitarity condition (2.15) that (qlTlk) is pure imaginary. 

(4.7) 

where C is a positive constant unless (qlTlk) = 0. This latter condition would imply 
that 4q was orthogonal to sgn VYT, i.e. to the only eigenvector of K’ with unit 
eigenvalue (see 5 2). Hence (2.1) would have infinitely many solutions, but all would 
give the same value for (q1Rlq). In this case alone 8, would be discontinuous, but 
(4.6) would still apply. 

without the restriction that cos S never vanishes. 

Near such a point we see from (2.17) that 

tan 6, = C tan S 

Case ( i i i )  p f q 

In the off-diagonal case we see, by replacing q by cyq + p p  in (4.5), where cy and p 
are arbitrary, that 

(4.8) 
This tells us that the off -diagonal elements do not differ by more than the on-diagonal 
elements. Thus the adequacy of an approximation need only be tested for the 
on-diagonal elements, subject of course to V2(r) 2 Vl(r). 

((plR Id2) - (PlR 14” s ((PIR IP)!2’-(PIR IP)(1))((41R Id2’ - (qlR 1 4 ) Y  
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