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R-matrix bounds for local potentials

A E A Warburton
Department of Applied Mathematics, The University of Hull, Hull, UK

Received 1 November 1982

Abstract. The continuum form of the Hellmann—FAeynman theorem is pcrcoved, both on
and off the energy shell, for potentials satisfying fJ r|V(r)ldr <o and [ |V(r)|dr <cc.
The corresponding bounds for the phase shifts and off-shell amplitudes are deduced.

1. Introduction

Use of the Faddeev equations for three-body scattering calculations requires a reliable
approximation to the two-body amplitudes off the energy shell. In view of the
arbitrariness of the off-shell extrapolation in the absence of three-body data it seems
safest to extrapolate, if possible, via a central local potential. These results could then
be approximated by more manageable amplitudes. Because of their simplicity, separ-
able potentials have often been used for the extrapolation, but suffer from theoretical
and practical difficulties in that (i) for a local potential the 7-matrix cannot be compact
(Osborn 1973), and hence cannot be well approximated by a separable potential for
all momenta, (ii) phase shifts which change sign cannot be approximated by a single
separable term, so that the approximation loses its simplicity, while gaining undeter-
mined parameters (see, for example, Ahmed and Beghi 1982).

The Hellmann-Feynman theorem, originally derived for the bound state problem
(Feynman 1939), but later extended to the scattering problem {Sugar and Blankenbe-
cler 1964), gives definite bounds for the off-shell amplitudes in terms of bounding
potentials, and so can be used, for example with variational principles, to obtain
potentials which approximate well both on- and off-shell. However, no rigorous
derivation of the theorem has been given for local potentials. The on-shell form of
the theorem, that V,(r) = V(r) implies §, = 8, has, of course, many direct applications.

We consider potentials satisfying the conditions, with A >0,

A <]
J r|\Vir) dr <o, J V(ridr<oo. (1.1)
0 A

For such potentials Rajagopal and Shastry (1971) have shown that multiplication of
the partial-wave Lippmann-Schwinger equation by |V|"/? gives a compact kernel K.
Thus we have the partial-wave equivalent of the Rollnik class of potentials discussed
by Simon (1971), although the latter class is more restricted as r - 00.

The Hellmann-Feynman theorem is most easily expressed in terms of the R-matrix
and the corresponding real wavefunction. In §2 we give the relevant formalism,
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establishing compactness (provided cos § # 0), and reconstructing the ‘usual’ wavefunc-
tion, i.e. that without the |V|"/? factor. The advantages of the R-matrix approach are:

(i) all wavefunctions and amplitudes are real;

(ii) we avoid the complication of letting the energy approach the real axis from
complex values, as discussed by Lovitch (1982);

(iii) full off-shell unitarity of the T-matrix is guaranteed for any approximation

giving a real symmetric R-matrix.
The main disadvantage is that when cos § =0 the R-matrix diverges. This makes it
difficult to establish a uniform bound for (1-K)™'. However, in § 3 we show that,
for a potential linearly dependent on a parameter A, if cos § # 0 for some A, there is
a neighbourhood of A in which cos§ #0 and 1-K)'is uniformly bounded. It
follows that the R-matrix is a differentiable function of A, and the Hellmann-Feynman
theorem follows.

Finally, in § 4, we derive the corresponding relations between the R-matrix ele-
ments for potentials V,=V;. For the on-diagonal elements these are simple
inequalities. For the off-diagonal elements we establish that these do not differ by
more than the on-diagonal elements, so that the usefulness of an approximation need
only be checked on-diagonal, i.e. for equal initial and final momenta.

2. R-matrix theory

The Lippmann-Schwinger equation reads, for the (real) off-shell wavefunction
modified by the factor |V (r)|*/?,

[

Wy (r) =¢q(r)+j0 Kir, r'yWy(r)dr’ (2.1)
where
bq(r) =V ()] *qrjitgr), (2.2)
K(r,r)=[V(l2GS(r, V()| sgn V(r), (2.3)
with
Go(r, ') = krr'j(kr)n,(kr') = GO(r', 1) (r<¢
= Golr, r'y+ikrr'fi(kr)fi(kr') (2.4)

where Gy is the (complex) T-matrix Green function.
The R-matrix elements are then given by

(pIR|q)=(¥,, sgn Vo) (2.5)
so that

(k|R|k)=—k tan 8. (2.6)
For potentials satisfying (1.1) we see that ¢, e L? while

TrHK K) = jo dr L dr' (V' julkr ) (ke )2V (2],

The only difference from the T-matrix calculation of Shastry and Rajagopal (1971)
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is that here n, replaces h{". But |h{"|* =j,+in|* =7 +n} =n?, so that, since we are
considering real positive energies, Tr(K K ) <o by the same arguments.
Now, since K is Hilbert-Schmidt, we see by the Fredholm alternative that either
{i} K has a normalisable eigenfunction ¥ with unit eigenvalue, or
(ii) ¥, is uniquely defined (in L?) by (2.1), whence {(p|R|q) is well defined by (2.5)
for all p and gq.
In the case (i) we see, using (2.4), that

x

Wir) =J K, r'Y¥(r') dr'

0
=u¢ku>+J' WV 2Golr, PV 2 sgn VYWY dr. (2.7)
0

Apart from the constant u this is just the on-shell equation for the complex wavefunc-
tion ¥{(r) from T-matrix theory. Thus

V(r)=uW¥ilr). (2.8)

(We are assuming here that the energy k> does not correspond to a positive energy
bound state, if any such exist. See, for example, Simon (1971).) Now from (2.7) we
have

w = (i/k) b sgn VW) = (iu/k)(di, sgn V) = —ig € sin 6.
Since u # 0 we see that we must have

cos b =0. (2.9)
Thus at any energy such that cos § # 0, (1 —K)7 ! exists as a bounded operator, and
the R-matrix is well defined. Given the solution W¥,(r) of (2.1) we can define

d,(r) =qr/'g(qr)+J Gor, IV )Y sgn Vi, (r') dr (2.10)
0

since the integral is easily shown to be convergent for any r. This is the ‘usual’
wavefunction (satisfying the Schrodinger equation if suitably differentiable) and clearly

W, (r) =V ()|, (r) (2.11)
although (2.10) holds even where V(r)=0.
Hence
CDq(r)=qrjz(qr)+J‘ Go(r, YV (rd,(r') dr’ (2.12)
0

although the kernel here is not Hilbert-Schmidt, and nor does &, < L*. Using (2.4)
the T-matrix may be expressed in terms of the R-matrix by

(pIT\q)=(pIRlq)—~(i/k) " cos 8{p|R|k)q|R k) (2.13)
so that
(k|T|k)=—k e°sin 8. (2.14)

Any approximation yielding a real symmetric R will then give T satisfying the full
off-shell unitarity condition

—k Im(p|Tq) = {p|T|k)*(q|T|k), (2.15)
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and
(piTla)=<qlTIp). (2.16)
Finally, we shall need the inverse of (2.13), which is
(pIR)g)=(p|T|q)+(i/k)(e™"*/cos 8)(p|T|k}q|T|k). (2.17)

3. The Hellmann-Feynman theorem

Let V; and V; be two potentials satisfying (1.1). Define

Ko =sgn Vol Vo' ?GoIVi |2 sgn Vi =K1, (3.1)
and

V2 =sgn Vo[V, D) =sgn Vop P + Ko Wy (3.2)

using (2.10). K, is Hilbert-Schmidt, by the same arguments as for K, whence ‘I'? e’
Then

L DF(NVorn® (r) dr = (¥, U2 = (p|R|q)> + (¥, K, ¥,'"), {3.3)

by (2.5), (2.11) and (3.2). Note that this formula, with V; = V;, shows that R is
symmetric in p and q.

Subtracting from (3.3) the same result with 12, p<g, using (3.1) and the
symmetry of R, we find

(pIRIg)* —(pIRIg)" =j O (Valr) = Vir)dY (r) dr. (3.4)
0

Now let

Vi=Vi+A(Va=-V)=Vi+AV, O=sA=1). (35)
Then (3.4) gives, with V, and V/ replacing V; and V5,

d . * Al . '

a(ﬁlR lq) = lim J:) ®;, (r) Vol(r)®g(r) dr = lim (W', sgn Volrgh)  (3.6)
where

W=V, 2D =0 +Koa V) (3.7)

and Ko, = | Vo' 2G|V, |'* sgn V, is Hilbert-Schmidt. To show the existence of the
limit (3.6) we first show that K, is continuous in the norm as a function of A. Suppose,

for a given r, that V, () and V,(r) are of the same sign (or one of them is zero).
Then, since Vi — V, =(A'—A)V,,

[Vl 2sgn Vi = ViV sgn Vi = [V 2= Va3 s 0 = A V3 v (3.8)

(here and in (3.9) we use the fact that if a, b, ¢ are non-negative numbers such that
a =b +c, then a1/2<b1/2+cl/2S(2a)1/2).

On the other hand, if V,.(r) and V,(r) are of opposite sign then there exists Aq
between A and A’ such that V, (r) =0. Therefore

Vilr) =& =A0) Violr)
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so that

“VA’]1/2 sgn V,\r—'|V,\ll/2 sgn VAI — (’VA”1/2+|VA|1/2)

e e e P W L e W VR A (3.9)
Thus for fixed r, r’
[Kou(r, r') = Ko (r, 1) < V2l Vo 2GS Vol 2 A = A |2, (3.10)
Hence
IKox—Koall < Ax = A|"? (3.11)

where A is independent of A, A,
In a similar way we may prove that

K~ Kil|<BJA' =A["? (3.12)
where
K,\ = ’V,\II/ZGSIVAP/Z Sgn V)‘

is the Lippmann-Schwinger kernel for the potential V,. (For this result we also use
the fact that |V, (r)| < max(]Vy(r)|, | Va(r)]), from which we can also see that K, and
K, are uniformly bounded for A €(0, 1).)

Now choose a fixed A such that cos § #0. Then M, =(1-K,)™" exists bounded
and we may use the identity

M, =M, = M[1 - (Ki —KOM ] (Ko~ KOM, (3.13)
to prove:
(i) there is a neighbourhood of A in which M, is defined and uniformly bounded,
although the bound may depend on A ;
(i) M, is continuous in the norm at such A.
Since K, also has these properties, so does

Ny =KoM, =Ko, (1-K,)7" (3.14)

Returning to (3.7), we see that WJ" is (strongly) continuous in A. For ¥2*=
@9 +Nyd, so that

“‘I"L?A"WSAH = ||NA'¢2’ —N)\qﬁQH
<[Nu|l - ll8s = al+INv =Nl - 5]
-0 asA' = A,
since ¢ = |V,\|"?qrji(gr) also has properties (i) and (ii) above.

It follows that the limit in (3.6) exists, giving

d o0
a“”R lg)= L G, (r) Volr)dgy(r) dr. (3.15)

4. Bounds on amplitudes

We now consider potentials such that, for all r,

Volr) = Vilr) = Vi(r)=0. 4.1)
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Case (i)p=q=k
On-shell, (3.15) gives
(d/dAXk|R|k)=0. (4.2)

Integrating from A =0to A =1, so that V, runs from V; to V,, we see that (k|R ’k)‘z' =
(k|R|k)", i.e. that

tan 8§ <tan 8", (4.3)

provided that cos § #0 for any V, with 0<A <1, Now our results show that tan §
varies continuously with A except where cos § =0, so it is possible to choose § to vary
continuously with A even where cos § =0. (We do not consider kK =0.) Then we have

6(2)s611) (44)

even if & passes through an odd multiple of 37.

Case {ii)p=q #k.
As in the above we find
(@IRlg)* =(q|Rlg)"’ (4.5)

subject to cos § never vanishing. We can see from (3.13) that this can be guaranteed
if V) is suitably small, for example, if V, were to be a variational approximation to
V1. If not, it is useful to introduce an off-shell phase shift by

(q|R|q)=—k tan §,
together with the requirement that §, lies in the same interval ((r — 3, (r+5Hm) as 8.

Then
6;2)§5;1) (46)

without the restriction that cos § never vanishes.
If cos § = 0 we see from the unitarity condition (2.15) that (q|T |k ) is pure imaginary.
Near such a point we see from (2.17) that

tan 8, ~C tan § 4.7)

where C is a positive constant unless (q|T|k)=0. This latter condition would imply
that ¢, was orthogonal to sgn V¥ ie. to the only eigenvector of K~ with unit
eigenvalue (see § 2). Hence (2.1) would have infinitely many solutions, but all would
give the same value for (q|R|g). In this case alone 8, would be discontinuous, but
(4.6) would still apply.

Case (fii)p #q

In the off-diagonal case we see, by replacing ¢ by ag +Bp in (4.5), where a and 3
are arbitrary, that

(pIRIg)® =(pRlq)")* = (pIRIp)* —(pIRIp)")(q|R|q9)* — (q|R|q)"). (4.8)

This tells us that the off-diagonal elements do not differ by more than the on-diagonal
elements. Thus the adequacy of an approximation need only be tested for the
on-diagonal elements, subject of course to V,(r) = V,(r).
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